Diamond Triangulations Contain Spanners of Bounded Degree

نویسندگان

  • Prosenjit Bose
  • Michiel H. M. Smid
  • Daming Xu
چکیده

Given a triangulation G, whose vertex set V is a set of n points in the plane, and given a real number γ with 0 < γ < π, we design an O(n)-time algorithm that constructs a connected spanning subgraph G′ of G whose maximum degree is at most 14 + d2π/γe. If G is the Delaunay triangulation of V , and γ = 2π/3, we show that G′ is a t-spanner of V (for some constant t) with maximum degree at most 17, thereby improving the previously best known degree bound of 23. If G is a triangulation satisfying the diamond property, then for a specific range of values of γ dependent on the angle of the diamonds, we show that G′ is a t-spanner of V (for some constant t) whose maximum degree is bounded by a constant dependent on γ. If G is the graph consisting of all Delaunay edges of length at most 1, and γ = π/3, we show that a modified version of the algorithm produces a plane subgraph G′ of the unit-disk graph which is a t-spanner (for some constant t) of the unit-disk graph of V , whose maximum degree is at most 20, thereby improving the previously best known degree bound of 25.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Delaunay and diamond Triangulations contain Spanners of Bounded Degree

Given a triangulation G, whose vertex set V is a set of n points in the plane, and given a real number γ with 0 < γ < π, we design an O(n)-time algorithm that constructs a connected subgraph G′ of G with vertex set V whose maximum degree is at most 14 + d2π/γe. If G is the Delaunay triangulation of V , and γ = 2π/3, we show that G′ is a t-spanner of V (for some constant t) with maximum degree a...

متن کامل

Degree Four Plane Spanners: Simpler and Better

Let P be a set of n points embedded in the plane, and let C be the complete Euclidean graph whose point-set is P. Each edge in C between two points p, q is realized as the line segment [pq], and is assigned a weight equal to the Euclidean distance |pq|. In this paper, we show how to construct inO(n lgn) time a plane spanner of C of maximum degree at most 4 and of stretch factor at most 20. This...

متن کامل

On Spanners and Lightweight Spanners of Geometric Graphs

We consider the problem of computing spanners of Euclidean and unit disk graphs embedded in the two-dimensional Euclidean plane. We are particularly interested in spanners that possess useful properties such as planarity, bounded degree, and/or light weight. Such spanners have been extensively studied in the area of computational geometry and have been used as the building block for constructin...

متن کامل

On Generalized Diamond Spanners

Given a set P of points in the plane and a set L of non-crossing line segments whose endpoints are in P , a constrained plane geometric graph is a plane graph whose vertex set is P and whose edge set contains L. An edge e has the α-visible diamond property if one of the two isosceles triangles with base e and base angle α does not contain any points of P visible to both endpoints of e. A constr...

متن کامل

Note on Bounded Degree Spanners for Doubling Metrics

We focus on obtaining sparse representations of metrics: these are called spanners, and they have been studied extensively both for general and Euclidean metrics. Formally, a t-spanner for a metric M = (V, d) is an undirected graph G = (V,E) such that the distances according to dG (the shortest-path metric of G) are close to the distances in d: i.e., d(u, v) ≤ dG(u, v) ≤ t d(u, v). Clearly, one...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006